Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival

نویسندگان

  • Hongying Yang
  • Tianle Yang
  • Joseph A. Baur
  • Evelyn Perez
  • Takashi Matsui
  • Juan J. Carmona
  • Dudley W. Lamming
  • Nadja C. Souza-Pinto
  • Vilhelm A. Bohr
  • Anthony Rosenzweig
  • Rafael de Cabo
  • Anthony A. Sauve
  • David A. Sinclair
چکیده

A major cause of cell death caused by genotoxic stress is thought to be due to the depletion of NAD(+) from the nucleus and the cytoplasm. Here we show that NAD(+) levels in mitochondria remain at physiological levels following genotoxic stress and can maintain cell viability even when nuclear and cytoplasmic pools of NAD(+) are depleted. Rodents fasted for 48 hr show increased levels of the NAD(+) biosynthetic enzyme Nampt and a concomitant increase in mitochondrial NAD(+). Increased Nampt provides protection against cell death and requires an intact mitochondrial NAD(+) salvage pathway as well as the mitochondrial NAD(+)-dependent deacetylases SIRT3 and SIRT4. We discuss the relevance of these findings to understanding how nutrition modulates physiology and to the evolution of apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress

Impaired nutrient sensing and dysregulated glucose homeostasis are common in diabetes. However, how nutrient-sensitive signaling components control glucose homeostasis and β cell survival under diabetic stress is not well understood. Here, we show that mice lacking the core nutrient-sensitive signaling component mammalian target of rapamycin (mTOR) in β cells exhibit reduced β cell mass and sma...

متن کامل

Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts.

Sirt3 (sirtuin 3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival, but the role of Sirt3 is unclear. To examin...

متن کامل

FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes.

AIM FK866 is an inhibitor of the NAD(+) synthesis rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Using FK866 to target NAD(+) synthesis has been proposed as a treatment for inflammatory diseases and cancer. However, use of FK866 may pose cardiovascular risks, as NAMPT expression is decreased in various cardiomyopathies, with low NAD(+) levels playing an important role in c...

متن کامل

Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells.

Two-photon excitation microscopy was used to image and quantify NAD(P)H autofluorescence from intact pancreatic islets under glucose stimulation. At maximal glucose stimulation, the rise in whole-cell NAD(P)H levels was estimated to be approximately 30 microM. However, because glucose-stimulated insulin secretion involves both glycolytic and Kreb's cycle metabolism, islets were cultured on extr...

متن کامل

The importance of redox shuttles to pancreatic beta-cell energy metabolism and function.

The coupling of cytosolic glycolytic NADH production with the mitochondrial electron transport chain is crucial for pancreatic beta-cell function and energy metabolism. The activity of lactate dehydrogenase in the beta-cell is low, thus glycolysis-derived electrons are transported towards the mitochondrial matrix by a NADH shuttle system, which in turn regenerates cytosolic NAD+. Mitochondrial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2007